Data Extraction
Extract structured data from unstructured text using AI. The minded-extraction tool uses LLM capabilities to parse content and return data in a predefined format.
Overview
Structured Extraction with Zod Schema: Define exact data structure
Prompt-based Extraction: Extract information using custom prompts
Validation and Retries: Automatic validation with configurable retry logic
Structured Output Support: Uses LLM native structured output when available
Using in Flows
- id: extractCustomerInfo
type: tool
toolName: minded-extraction
prompt: Extract customer name, email, and phone number from the messageTool Parameters
content
string
Text to extract from
Yes
schema
object
Zod-compatible schema
No
systemPrompt
string
Custom instructions
No
examples
array
Input/output examples
No
strictMode
boolean
Enable validation (default: true)
No
maxRetries
number
Retry attempts on failure (default: 3)
No
defaultValue
any
Fallback value
No
Overriding Parameters in Flows
Available schema field properties:
type:'string','number','boolean','array', or'object'description: Optional field descriptionrequired: Optional boolean (defaults to true)
Programmatic Usage
How It Works
With Structured Output Support: Uses LLM's
withStructuredOutputfor direct schema-compliant extractionFallback Mode: Generates prompt with schema description, parses JSON, validates against Zod schema, retries with error feedback
Non-strict Mode: Skips validation for flexible extraction
Last updated