Events

Events are messages that flow through your agent during execution, providing visibility into what's happening and enabling reactive behavior.

MindedJS currently supports 6 main event types. Each event type has its own specific input structure, output requirements, and use cases.

History Structure

All events provide access to the agent's history, which is a crucial part of understanding and tracking the execution flow. The history is an array of HistoryStep objects that represent each step the agent has taken during execution.

HistoryStep Structure

Each history step contains the following information:

  • step: Sequential step number in the agent's execution flow

  • type: Type of the step (e.g., TRIGGER_NODE, APP_TRIGGER_NODE, TOOL_NODE, LLM_NODE)

  • nodeId: ID of the node that was executed

  • nodeDisplayName: Human-readable name of the node

  • raw: Raw data associated with the step (e.g., trigger input, tool output)

  • messageIds: IDs of messages associated with this step

Additional fields are available depending on the step type:

  • For APP_TRIGGER_NODE steps: appName identifies the source application

  • For TOOL_NODE steps: Contains tool input and output information

Example Usage

agent.on(events.AI_MESSAGE, async ({ message, state }) => {
  // Access the complete execution history
  const history = state.history;

  // Find the initial trigger that started this conversation
  const triggerStep = history.find((step) => step.type === 'TRIGGER_NODE' || step.type === 'APP_TRIGGER_NODE');

  // Find all tool executions in this conversation
  const toolSteps = history.filter((step) => step.type === 'TOOL_NODE');

  // Get the last executed node
  const lastStep = history[history.length - 1];

  console.log(`Conversation started with trigger: ${triggerStep?.nodeDisplayName}`);
  console.log(`Used ${toolSteps.length} tools so far`);
  console.log(`Last executed node: ${lastStep?.nodeDisplayName}`);
});

INIT

The INIT event is emitted when the agent's graph state is initialized. This happens when a new session begins or when the agent starts processing a new conversation context.

Input Structure

{
  state: {                           // Full initial agent state
    messages: BaseMessage[];         // Empty array - no messages yet
    memory: Memory;                  // Initial memory state (from your schema defaults)
    history: HistoryStep[];          // Empty array - no flow history yet
    sessionId: string;               // Session identifier (generated or provided)
    sessionType: SessionType;        // Type of session (TEXT, VOICE, etc.)
  }
}

Handler Return Value

  • Return type: void

  • Purpose: Handlers are used for side effects like logging, setup, or initialization tasks

  • Note: Return values are ignored

Usage Example

import { Agent, events } from 'mindedjs';

const agent = new Agent({
  memorySchema,
  config,
  tools,
});

// Listen to initialization events
agent.on(events.INIT, async ({ state }) => {
  console.log('Agent initialized for session:', state.sessionId);
  console.log('Session type:', state.sessionType);
  console.log('Initial memory:', state.memory);

  // Setup session-specific resources
  await initializeSessionResources(state.sessionId);

  // Log session start for analytics
  await logSessionStart({
    sessionId: state.sessionId,
    sessionType: state.sessionType,
    timestamp: new Date(),
  });

  // Initialize external services if needed
  if (state.sessionType === 'VOICE') {
    await setupVoiceSession(state.sessionId);
  }
});

Common Use Cases

  • Session Logging: Track when new sessions begin for analytics

  • Resource Initialization: Set up session-specific resources or connections

  • State Validation: Verify initial memory state meets requirements

  • External Service Setup: Initialize third-party services for the session

  • Session Routing: Route sessions to appropriate handlers based on type

  • Debugging: Log initial state for troubleshooting

AI_MESSAGE

The AI_MESSAGE event is emitted when an AI generates a message that should be sent to the user.

Input Structure

{
  message: string; // The AI-generated message content
  state: {        // Full agent state
    messages: BaseMessage[];           // Conversation messages
    memory: Memory;                    // Current memory state (your defined memory schema)
    history: HistoryStep[];            // Flow execution history with detailed step information
    sessionId: string;                 // Session identifier
  }
}

Handler Return Value

  • Return type: void

  • Purpose: Handlers are used for side effects like sending messages to UI

  • Note: Return values are ignored

Usage Example

import { Agent, events } from 'mindedjs';

const agent = new Agent({
  memorySchema,
  config,
  tools,
});

// Listen to AI messages
agent.on(events.AI_MESSAGE, async ({ message, state }) => {
  console.log('AI said:', message);
  console.log('Current memory:', state.memory);
  console.log('Session ID:', state.sessionId);
  console.log('Message count:', state.messages.length);

  // Send message to user interface with session context
  await sendMessageToUser(message, state.sessionId);

  // Send via WebSocket with session information
  await websocket.send(
    JSON.stringify({
      type: 'ai_message',
      content: message,
      sessionId: state.sessionId,
      memory: state.memory,
    }),
  );
});

Common Use Cases

  • Real-time Chat UI: Send AI responses to chat interfaces with session context

  • Logging: Record AI responses for analytics or debugging with session tracking

  • Message Formatting: Transform AI messages before displaying to users

  • Notifications: Trigger alerts or notifications based on AI responses

  • Session Management: Route messages to specific user sessions or conversation threads

TRIGGER_EVENT

The TRIGGER_EVENT event is emitted when a trigger node is executed. This event allows you to qualify, transform, and provide initial state for trigger inputs before they're processed by the agent.

Input Structure

{
  triggerName: string;  // Name of the trigger being executed
  triggerBody: any;     // The trigger input data (type varies by trigger)
  sessionId?: string;   // Optional session ID for the trigger execution
}

Handler Return Values

TRIGGER_EVENT handlers must return an object that contains, at minimum, an isQualified: boolean field. Depending on your needs you may also return messages, memory, or a sessionId.

The three common patterns are:

1. Provide Initial State & Qualify

{
  isQualified: true,          // ✅ The trigger should be processed
  messages?: BaseMessage[],   // Optional initial conversation messages
  memory?: Memory,            // Optional initial memory state
  history?: HistoryStep[],    // Optional history steps to include
  sessionId?: string,         // Optional session continuity identifier
  state?: {
    goto?: string,            // Optional: jump to a specific node ID
  }
}

2. Disqualify the Trigger

{
  isQualified: false; // ❌ Rejects / disqualifies the trigger
}

3. Qualify Without Extra State

{
  isQualified: true; // ✅ Accept the trigger – no extra state needed
}

Note on sessionId: The sessionId is crucial for persistence and resuming existing sessions. When you provide a sessionId that already exists, the agent will resume from the previous state. If none is provided or a new one is given, a fresh execution starts. The platform will automatically generate a sessionId for you in the sandbox playground – make sure to pass it forward in that environment.

Usage Examples

Processing User Input

agent.on(events.TRIGGER_EVENT, async ({ triggerName, triggerBody, sessionId }) => {
  if (triggerName === 'userMessage') {
    console.log('Processing trigger for session:', sessionId);
    return {
      isQualified: true,
      memory: {
        conversationStarted: true,
        sessionId: sessionId, // Store session ID in memory if needed
      },
      messages: [new HumanMessage(triggerBody)],
    };
  }
});

Trigger Qualification

agent.on(events.TRIGGER_EVENT, async ({ triggerName, triggerBody }) => {
  // Validate the trigger input
  if (!isValidInput(triggerBody)) {
    return { isQualified: false }; // Disqualify the trigger
  }

  // Only process during business hours
  if (triggerName === 'supportRequest' && !isBusinessHours()) {
    return { isQualified: false };
  }

  return {
    isQualified: true,
    memory: { validatedInput: triggerBody },
    messages: [],
  };
});

Input Transformation

agent.on(events.TRIGGER_EVENT, async ({ triggerName, triggerBody }) => {
  if (triggerName === 'emailTrigger') {
    // Transform email data into structured format
    const parsedEmail = parseEmailContent(triggerBody);

    return {
      isQualified: true,
      memory: {
        emailSubject: parsedEmail.subject,
        senderEmail: parsedEmail.from,
      },
      messages: [new HumanMessage(parsedEmail.content)],
    };
  }
  // Disqualify all other triggers handled by this listener
  return { isQualified: false };
});

Dynamic Flow Control with goto

agent.on(events.TRIGGER_EVENT, async ({ triggerName, triggerBody, state }) => {
  // Check condition and jump to specific node
  if (triggerBody.priority === 'high') {
    return {
      isQualified: true,
      state: {
        ...state,
        goto: 'high-priority-handler', // Jump to specific node
      },
    };
  }

  return { isQualified: true };
});

Note: The jump occurs only when the current invocation completes and the next one begins. The agent will finish executing the current node before jumping to the specified node.

Common Use Cases

  • Input Validation: Ensure trigger data meets requirements before processing

  • Data Transformation: Convert trigger inputs into standardized formats

  • Context Setting: Provide initial memory state based on trigger context

  • Access Control: Disqualify triggers based on permissions or business rules

  • Routing Logic: Handle different trigger types with specific logic

ERROR

The ERROR event is emitted when an error occurs during agent execution. This event allows you to handle errors gracefully, log them for debugging, implement custom error recovery logic, or control whether the error should be thrown onwards.

Input Structure

{
  error: Error;  // The error object that was thrown
  state: {       // Full agent state at the time of error
    messages: BaseMessage[];           // Conversation messages
    memory: Memory;                    // Current memory state (your defined memory schema)
    history: HistoryStep[];            // Flow execution history with detailed step information
    sessionId: string;                 // Session identifier
  }
}

Handler Return Value

{
  throwError: boolean;           // Whether to throw the error onwards and stop the agent run
  state?: Partial<State<Memory>>; // Optional state updates to apply
}
  • throwError: When set to true, the error will be thrown onwards and the agent run will stop. If false or not returned, the error is caught and the agent continues.

  • state: Optional partial state updates to apply before continuing or throwing

Usage Example

import { Agent, events } from 'mindedjs';

const agent = new Agent({
  memorySchema,
  config,
  tools,
});

// Listen to errors and control error flow
agent.on(events.ERROR, async ({ error, state }) => {
  console.error('Agent error occurred:', error.message);
  console.error('Error stack:', error.stack);
  console.log('Session ID:', state.sessionId);
  console.log('Current memory:', state.memory);

  // Log to external service
  await logger.error({
    message: 'Agent execution error',
    error: error.message,
    stack: error.stack,
    sessionId: state.sessionId,
    memory: state.memory,
  });

  // Handle recoverable vs non-recoverable errors
  if (error.message.includes('rate limit')) {
    // Recoverable error - update state and continue
    return {
      throwError: false, // Don't stop the agent
      state: {
        memory: {
          ...state.memory,
          errorRecovered: true,
          lastError: error.message,
        },
      },
    };
  }

  // Critical error - stop the agent
  if (error.message.includes('authentication failed')) {
    await notificationService.alert({
      type: 'critical_error',
      error: error.message,
      sessionId: state.sessionId,
    });

    return {
      throwError: true, // Stop the agent run
    };
  }

  // Default: let the error be handled normally
  return { throwError: false };
});

Common Use Cases

  • Error Logging: Record errors for debugging and monitoring with full context

  • Error Recovery: Implement custom recovery logic by returning throwError: false and updating state

  • Critical Error Handling: Stop agent execution for unrecoverable errors with throwError: true

  • User Notifications: Provide graceful error messages to users

  • Monitoring & Alerting: Integrate with monitoring systems for error tracking

  • Session Management: Clean up or reset sessions that encountered errors

  • Analytics: Track error patterns and frequencies for system improvement

  • Graceful Degradation: Continue execution with fallback behavior for non-critical errors

ON_LOGICAL_CONDITION

The ON_LOGICAL_CONDITION event is emitted when the agent is about to evaluate a logical condition on an edge. This event provides visibility into the condition evaluation process and allows you to track which conditions are being checked during flow execution.

Input Structure

{
  edge: LogicalConditionEdge;  // The edge containing the condition
  state: {                     // Full agent state at evaluation time
    messages: BaseMessage[];   // Conversation messages
    memory: Memory;            // Current memory state (your defined memory schema)
    history: HistoryStep[];    // Flow execution history with detailed step information
    sessionId: string;         // Session identifier
  };
  condition: string;           // The condition expression being evaluated
}

Handler Return Value

  • Return type: void

  • Purpose: Handlers are used for debugging, logging, and monitoring condition evaluations

  • Note: Return values are ignored

Usage Example

import { Agent, events } from 'mindedjs';

const agent = new Agent({
  memorySchema,
  config,
  tools,
});

// Listen to condition evaluation events
agent.on(events.ON_LOGICAL_CONDITION, async ({ edge, state, condition }) => {
  console.log('Evaluating condition:', condition);
  console.log('On edge from:', edge.source, 'to:', edge.target);
  console.log('Current memory:', state.memory);
  console.log('Session ID:', state.sessionId);

  // Log for debugging
  await logger.debug({
    event: 'condition_evaluation_start',
    condition,
    edge: {
      source: edge.source,
      target: edge.target,
    },
    memory: state.memory,
    sessionId: state.sessionId,
  });

  // Track condition usage analytics
  await analytics.track('condition_evaluated', {
    condition,
    edgeSource: edge.source,
    edgeTarget: edge.target,
    sessionId: state.sessionId,
  });
});

Common Use Cases

  • Debugging Flow Logic: Trace which conditions are evaluated and in what order

  • Performance Monitoring: Track when condition evaluations start

  • Analytics: Understand which flow paths are most commonly evaluated

  • Testing: Verify that expected conditions are being checked

  • Audit Logging: Record decision points for compliance or debugging

ON_LOGICAL_CONDITION_RESULT

The ON_LOGICAL_CONDITION_RESULT event is emitted after a logical condition has been evaluated, providing the result and execution metrics. This event is crucial for understanding flow decisions and monitoring performance.

Input Structure

{
  edge: LogicalConditionEdge;   // The edge containing the condition
  state: {                      // Full agent state after evaluation
    messages: BaseMessage[];    // Conversation messages
    memory: Memory;             // Current memory state (your defined memory schema)
    history: HistoryStep[];     // Flow execution history with detailed step information
    sessionId: string;          // Session identifier
  };
  condition: string;            // The condition expression that was evaluated
  result: boolean;              // The evaluation result (true/false)
  executionTimeMs: number;      // Time taken to evaluate the condition in milliseconds
  error?: Error;                // Optional error if evaluation failed
}

Handler Return Value

  • Return type: void

  • Purpose: Handlers are used for logging results, performance monitoring, and debugging

  • Note: Return values are ignored

Usage Example

import { Agent, events } from 'mindedjs';

const agent = new Agent({
  memorySchema,
  config,
  tools,
});

// Listen to condition results
agent.on(events.ON_LOGICAL_CONDITION_RESULT, async ({ edge, state, condition, result, executionTimeMs, error }) => {
  console.log('Condition result:', result);
  console.log('Execution time:', executionTimeMs, 'ms');

  if (error) {
    console.error('Condition evaluation failed:', error.message);
  }

  // Log detailed results
  await logger.debug({
    event: 'condition_evaluation_complete',
    condition,
    result,
    executionTimeMs,
    edge: {
      source: edge.source,
      target: edge.target,
    },
    memory: state.memory,
    sessionId: state.sessionId,
    error: error?.message,
  });

  // Performance monitoring
  if (executionTimeMs > 10) {
    await logger.warn({
      message: 'Slow condition detected',
      condition,
      executionTimeMs,
      sessionId: state.sessionId,
    });
  }

  // Track failed conditions
  if (!result) {
    await analytics.track('condition_failed', {
      condition,
      edgeSource: edge.source,
      edgeTarget: edge.target,
      sessionId: state.sessionId,
    });
  }
});

Common Use Cases

  • Performance Monitoring: Track execution times to identify slow conditions

  • Debugging Failed Conditions: Understand why certain flow paths aren't taken

  • Flow Analytics: Analyze which conditions pass/fail most frequently

  • Error Tracking: Monitor and alert on condition evaluation errors

  • Optimization: Identify conditions that could be simplified or cached

  • Testing: Verify condition results match expected behavior

Last updated